from pydantic import BaseModel
from intelligence_layer.connectors.retrievers.base_retriever import Document
from intelligence_layer.connectors.retrievers.qdrant_in_memory_retriever import (
QdrantInMemoryRetriever,
)
from intelligence_layer.core import (
Chunk,
ChunkInput,
ChunkOutput,
ControlModel,
Language,
LuminousControlModel,
Task,
TaskSpan,
TextChunk,
)
from intelligence_layer.examples.qa.multiple_chunk_qa import (
MultipleChunkQa,
MultipleChunkQaInput,
MultipleChunkQaOutput,
)
from intelligence_layer.examples.search.search import Search, SearchInput
[docs]
class LongContextQaInput(BaseModel):
"""The input for a `LongContextQa` task.
Attributes:
text: Text of arbitrary length on the basis of which the question is to be answered.
question: The question for the text.
language: The desired language of the answer. ISO 619 str with language e.g. en, fr, etc.
"""
text: str
question: str
language: Language = Language("en")
[docs]
class LongContextQa(Task[LongContextQaInput, MultipleChunkQaOutput]):
"""Answer a question on the basis of a (lengthy) document.
Best for answering a question on the basis of a long document, where the length
of text exceeds the context length of a model (e.g. 2048 tokens for the luminous models).
Note:
- Creates instance of `InMemoryRetriever` on the fly.
- `model` provided should be a control-type model.
Args:
multi_chunk_qa: task used to produce answers for each relevant chunk generated
by the chunk-task for the given input. Defaults to :class:`MultipleChunkQa` .
chunk: task used to chunk the input. Defaults to :class:`Chunk` .
k: The number of top relevant chunks to retrieve.
model: The model used in the task.
Example:
>>> from intelligence_layer.core import InMemoryTracer, LuminousControlModel
>>> from intelligence_layer.examples import LongContextQa, LongContextQaInput
>>> model = LuminousControlModel("luminous-base-control")
>>> task = LongContextQa(model=model)
>>> input = LongContextQaInput(text="Lengthy text goes here...",
... question="Where does the text go?")
>>> tracer = InMemoryTracer()
>>> output = task.run(input, tracer)
"""
def __init__(
self,
multi_chunk_qa: Task[MultipleChunkQaInput, MultipleChunkQaOutput] | None = None,
chunk: Task[ChunkInput, ChunkOutput] | None = None,
k: int = 4,
model: ControlModel | None = None,
):
super().__init__()
self._model = model or LuminousControlModel("luminous-supreme-control")
self._chunk_task = chunk or Chunk(self._model, 1024)
self._multi_chunk_qa = multi_chunk_qa or MultipleChunkQa(
merge_answers_model=self._model
)
self._k = k
[docs]
def do_run(
self, input: LongContextQaInput, task_span: TaskSpan
) -> MultipleChunkQaOutput:
chunk_output = self._chunk_task.run(ChunkInput(text=input.text), task_span)
retriever = QdrantInMemoryRetriever(
client=self._model._client,
documents=[
Document(
text=c,
)
for c in chunk_output.chunks
],
k=self._k,
threshold=0.5,
)
search_output = Search(retriever).run(
SearchInput(query=input.question), task_span
)
multi_chunk_qa_input = MultipleChunkQaInput(
chunks=[
TextChunk(result.document_chunk.text)
for result in search_output.results
],
question=input.question,
language=input.language,
)
qa_output = self._multi_chunk_qa.run(multi_chunk_qa_input, task_span)
return qa_output