Source code for intelligence_layer.evaluation.aggregation.accumulator

from abc import ABC, abstractmethod
from typing import Generic, TypeVar

T = TypeVar("T")
Output = TypeVar("Output")


class Accumulator(ABC, Generic[T, Output]):
    """Used for incremental computation.

    For use cases with large amount of data where you don't want to have every value in memory at once, e.g. evaluation.
    """

    @abstractmethod
    def add(self, value: T) -> None:
        """Responsible for accumulating values.

        Args:
            value: the value to add
        Returns:
             nothing
        """
        ...

    @abstractmethod
    def extract(self) -> Output:
        """Accumulates the final result.

        Returns:
           float: 0.0 if no values were added before, else the mean
        """
        ...


[docs] class MeanAccumulator(Accumulator[float, float]): def __init__(self) -> None: self._n = 0 self._acc = 0.0 self._squares_acc = 0.0 # Sum of squares of the values
[docs] def add(self, value: float) -> None: self._n += 1 self._acc += value self._squares_acc += value**2
[docs] def extract(self) -> float: """Accumulates the mean. :return: 0.0 if no values were added before, else the mean """ return 0.0 if self._n == 0 else self._acc / self._n
[docs] def standard_deviation(self) -> float: """Calculates the standard deviation.""" if self._n == 0: return 0.0 mean = self.extract() variance = (self._squares_acc / self._n) - (mean**2) return variance**0.5
[docs] def standard_error(self) -> float: """Calculates the standard error of the mean.""" if self._n <= 1: return 0.0 return self.standard_deviation() / (self._n**0.5)