Source code for intelligence_layer.connectors.document_index.document_index

import re
from collections.abc import Mapping, Sequence
from datetime import datetime, timezone
from enum import Enum
from http import HTTPStatus
from json import dumps
from typing import Annotated, Any, Literal, Optional, TypeAlias, Union
from urllib.parse import quote, urljoin

import requests
from pydantic import BaseModel, ConfigDict, Field, field_validator, model_validator
from pydantic.types import StringConstraints
from requests import HTTPError
from typing_extensions import Self

from intelligence_layer.connectors.base.json_serializable import JsonSerializable

Representation: TypeAlias = Literal["symmetric", "asymmetric"]
HybridIndex: TypeAlias = Literal["bm25"] | None
EmbeddingConfig: TypeAlias = Union["SemanticEmbed", "InstructableEmbed"]


[docs] class IndexPath(BaseModel, frozen=True): """Path to an index. Args: namespace: The namespace to which this index belongs. index: The name of the index. """ namespace: str index: str
[docs] class SemanticEmbed(BaseModel): """Semantic embedding configuration. Args: model_name: Name of the model to use. representation: The embedding representation to use: "symmetric" or "asymmetric". Use "symmetric" when the queries and documents are the same, e.g., for classification tasks. Use "asymmetric" when the queries and documents are different, e.g., for search tasks. """ # `model_name` conflicts with the default protected `model_*` namespace model_config = ConfigDict(protected_namespaces=()) strategy: Literal["semantic_embed"] = "semantic_embed" model_name: str representation: Representation
[docs] class InstructableEmbed(BaseModel): """Instructable embedding configuration. Args: model_name: Name of the model to use. query_instruction: Instruction to apply when embedding queries. document_instruction: Instruction to apply when embedding documents. """ # `model_name` conflicts with the default protected `model_*` namespace model_config = ConfigDict(protected_namespaces=()) strategy: Literal["instructable_embed"] = "instructable_embed" model_name: str query_instruction: str = "" document_instruction: str = ""
[docs] class IndexConfiguration(BaseModel): """Configuration of an index. Args: chunk_overlap: The maximum number of tokens of overlap between consecutive chunks. Must be less than `chunk_size`. chunk_size: The maximum size of the chunks in tokens to be used for the index. hybrid_index: If set to "bm25", combine vector search and keyword search (bm25) results. embedding: Configuration for the embedding of chunks. """ # `model_name` in `embedding` conflicts with the default protected `model_*` namespace model_config = ConfigDict(protected_namespaces=()) chunk_overlap: int = Field(default=0, ge=0) chunk_size: int = Field(..., gt=0, le=2046) hybrid_index: HybridIndex = None embedding: EmbeddingConfig @model_validator(mode="after") def validate_chunk_overlap(self) -> Self: if not self.chunk_overlap < self.chunk_size: raise ValueError("chunk_overlap must be less than chunk_size") return self
[docs] class DocumentContents(BaseModel): """Actual content of a document. Note: Currently only supports text-only documents. Args: contents: List of text items. metadata: Any metadata that is kept along with the document. This could contain things like author, creation-data, references to external systems. The content must be serializable using `json.dumps`. The document-index leaves it unchanged. """ contents: Sequence[str] metadata: JsonSerializable = None @classmethod def from_text(cls, text: str) -> "DocumentContents": return cls(contents=[text]) @classmethod def _from_modalities_json( cls, modalities_json: Mapping[str, Any] ) -> "DocumentContents": return cls( contents=[ modality["text"] for modality in modalities_json.get("contents", []) if modality["modality"] == "text" ], metadata=modalities_json.get("metadata"), ) def _to_modalities_json(self) -> Mapping[str, Any]: return { "schema_version": "V1", "contents": [{"modality": "text", "text": c} for c in self.contents], "metadata": self.metadata, }
[docs] class CollectionPath(BaseModel, frozen=True): """Path to a collection. Args: namespace: Holds collections. collection: Holds documents. Unique within a namespace. """ namespace: str collection: str
[docs] class DocumentPath(BaseModel, frozen=True): """Path to a document. Args: collection_path: Path to a collection. document_name: Points to a document. Unique within a collection. """ collection_path: CollectionPath document_name: str def encoded_document_name(self) -> str: return quote(self.document_name, safe="") @classmethod def from_json(cls, document_path_json: Mapping[str, str]) -> "DocumentPath": return cls( collection_path=CollectionPath( namespace=document_path_json["namespace"], collection=document_path_json["collection"], ), document_name=document_path_json["name"], ) def to_slash_separated_str(self) -> str: return f"{self.collection_path.namespace}/{self.collection_path.collection}/{self.document_name}" @classmethod def from_slash_separated_str(cls, path: str) -> "DocumentPath": split = path.split("/", 2) assert len(split) == 3 return cls( collection_path=CollectionPath( namespace=split[0], collection=split[1], ), document_name=split[2], )
[docs] class DocumentInfo(BaseModel): """Information about a document. Args: document_path: Path to the document. The path uniquely identifies the document among all managed documents. created: When this version of the document was created. Equivalent to when it was last updated. version: The version of the document, i.e., how many times the document was updated. """ document_path: DocumentPath created: datetime version: int @classmethod def from_list_documents_response( cls, list_documents_response: Mapping[str, Any] ) -> "DocumentInfo": return cls( document_path=DocumentPath.from_json(list_documents_response["path"]), created=datetime.strptime( list_documents_response["created_timestamp"], "%Y-%m-%dT%H:%M:%S.%fZ" ), version=list_documents_response["version"], )
[docs] class FilterOps(Enum): """Enumeration of possible filter operations.""" GREATER_THAN = "greater_than" GREATER_THAN_OR_EQUAL_TO = "greater_than_or_equal_to" LESS_THAN = "less_than" LESS_THAN_OR_EQUAL_TO = "less_than_or_equal_to" AFTER = "after" AT_OR_AFTER = "at_or_after" BEFORE = "before" AT_OR_BEFORE = "at_or_before" EQUAL_TO = "equal_to" IS_NULL = "is_null"
[docs] class FilterField(BaseModel): """Represents a field to filter on in the DocumentIndex metadata.""" field_name: Annotated[ str, StringConstraints(max_length=1000, pattern=r"^[\w-]+(\.\d{0,5})?[\w-]*$") ] = Field( ..., description="The name of the field present in DocumentIndex collection metadata.", ) field_value: Union[str, int, float, bool, datetime] = Field( ..., description="The value to filter on in the DocumentIndex metadata." ) criteria: FilterOps = Field(..., description="The criteria to apply for filtering.")
[docs] @field_validator("field_value", mode="before") def validate_and_convert_datetime( cls: BaseModel, v: Union[str, int, float, bool, datetime] ) -> Union[str, int, float, bool]: """Validate field_value and convert datetime to RFC3339 format with Z suffix. Args: v: The value to be validated and converted. # noqa: DAR102: + cls Returns: The validated and converted value. """ if isinstance(v, datetime): if v.tzinfo is None or v.tzinfo.utcoffset(v) is None: raise ValueError("datetime must have timezone info") if v.tzinfo != timezone.utc: v = v.astimezone(timezone.utc) # Convert to rfc3339 and add the Z iso_format = v.isoformat(timespec="seconds").replace("+00:00", "Z") # Validate the format rfc3339_pattern = re.compile(r"^\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2}Z$") if not rfc3339_pattern.match(iso_format): raise ValueError( "datetime must be in RFC3339 format with Z suffix, e.g., 2023-01-01T12:00:00Z" ) return iso_format return v
[docs] class Filters(BaseModel): """Represents a set of filters to apply to a search query.""" filter_type: Literal["with", "without", "with_one_of"] = Field( ..., description="The type of filter to apply." ) fields: list[FilterField] = Field( ..., description="The list of fields to filter on." )
[docs] class SearchQuery(BaseModel): """Query to search through a collection with. Args: query: Actual text to be searched with. max_results: Max number of search results to be retrieved by the query. Must be larger than 0. min_score: Filter out results with a similarity score below this value. Must be between -1 and 1. For searches on hybrid indexes, the Document Index applies the min_score to the semantic results before fusion of result sets. As fusion re-scores results, returned scores may exceed this value. """ query: str max_results: int = Field(ge=0, default=1) min_score: float = Field(ge=-1.0, le=1.0, default=0.0) filters: Optional[list[Filters]] = None
class DocumentFilterQueryParams(BaseModel): """Query to filter documents by. Args: max_documents: Maximum number of documents to display. starts_with: Document title prefix/substring to search by. """ max_documents: Optional[Annotated[int, Field(default=25, ge=0)]] starts_with: Optional[str] class DocumentTextPosition(BaseModel): """Position of a document chunk within a document item. Args: item: Which item in the document the chunk belongs to. start_position: Start index of the chunk within the item. end_position: End index of the chunk within the item. """ item: int start_position: int end_position: int
[docs] class DocumentSearchResult(BaseModel): """Result of a search query for one individual section. Args: document_path: Path to the document that the section originates from. section: Actual section of the document that was found as a match to the query. score: Search score of the found section. Will be between 0 and 1. Higher scores correspond to higher matches. The score depends on the index configuration, e.g. the score of a section differs for hybrid and non-hybrid indexes. For searches on hybrid indexes, the score can exceed the min_score of the query as the min_score only applies to the similarity score. """ document_path: DocumentPath section: str score: float chunk_position: DocumentTextPosition @classmethod def _from_search_response( cls, search_response: Mapping[str, Any] ) -> "DocumentSearchResult": assert search_response["start"]["item"] == search_response["end"]["item"] return cls( document_path=DocumentPath.from_json(search_response["document_path"]), section=search_response["section"][0]["text"], score=search_response["score"], chunk_position=DocumentTextPosition( item=search_response["start"]["item"], start_position=search_response["start"]["position"], end_position=search_response["end"]["position"], ), )
class DocumentChunk(BaseModel): """A chunk of a document. Note: Currently only supports text-only documents. Args: document_path: Path to the document that the chunk originates from. section: Content of the chunk. position: Position of the chunk within the document. """ document_path: DocumentPath section: str position: DocumentTextPosition @classmethod def _from_chunk_response(cls, chunk_response: Mapping[str, Any]) -> "DocumentChunk": assert chunk_response["start"]["item"] == chunk_response["end"]["item"] assert chunk_response["section"][0]["modality"] == "text" return cls( document_path=DocumentPath.from_json(chunk_response["document_path"]), section=chunk_response["section"][0]["text"], position=DocumentTextPosition( item=chunk_response["start"]["item"], start_position=chunk_response["start"]["position"], end_position=chunk_response["end"]["position"], ), )
[docs] class DocumentIndexError(RuntimeError): """Raised in case of any `DocumentIndexClient`-related errors. Attributes: message: The error message as returned by the Document Index. status_code: The http error code. """ def __init__(self, message: str, status_code: HTTPStatus) -> None: """Initialize the error. Args: message: Message to return. status_code: Status code to return. """ super().__init__(message) self.message = message self.status_code = status_code
[docs] class ExternalServiceUnavailable(DocumentIndexError): """Raised in case external service is unavailable when the request is executed.""" pass
[docs] class ResourceNotFound(DocumentIndexError): """Raised when a resource like a namespace or a document cannot be found. Note that this can also mean that the user executing the request does not have permission to access the resource. """ pass
[docs] class InvalidInput(DocumentIndexError): """Raised when the user-input could not be processed as it violates pre-conditions.""" pass
[docs] class ConstraintViolation(DocumentIndexError): """Raised when the request cannot be processed as it would lead to an inconsistent state.""" pass
_status_code_to_exception = { HTTPStatus.SERVICE_UNAVAILABLE: ExternalServiceUnavailable, HTTPStatus.NOT_FOUND: ResourceNotFound, HTTPStatus.UNPROCESSABLE_ENTITY: InvalidInput, HTTPStatus.CONFLICT: ConstraintViolation, }
[docs] class InternalError(DocumentIndexError): """Raised in case of unexpected errors.""" pass
[docs] class DocumentIndexClient: """Client for the Document Index allowing handling documents and search. Document Index is a tool for managing collections of documents, enabling operations such as creation, deletion, listing, and searching. Documents can be stored either in the cloud or in a local deployment. Args: token: A valid token for the document index API. base_document_index_url: The url of the document index' API. """ def __init__( self, token: str | None, base_document_index_url: str = "https://document-index.aleph-alpha.com", ) -> None: self._base_document_index_url = base_document_index_url self.headers = { "Content-Type": "application/json", "Accept": "application/json", **({"Authorization": f"Bearer {token}"} if token is not None else {}), }
[docs] def list_namespaces(self) -> Sequence[str]: """Lists all available namespaces. Returns: List of all available namespaces. """ url = urljoin(self._base_document_index_url, "namespaces") response = requests.get(url, headers=self.headers) self._raise_for_status(response) return [str(namespace) for namespace in response.json()]
[docs] def create_collection(self, collection_path: CollectionPath) -> None: """Creates a collection at the path. Note: Collection's name must be unique within a namespace. Args: collection_path: Path to the collection of interest. """ url_suffix = ( f"/collections/{collection_path.namespace}/{collection_path.collection}" ) url = urljoin(self._base_document_index_url, url_suffix) response = requests.put(url, headers=self.headers) self._raise_for_status(response)
[docs] def delete_collection(self, collection_path: CollectionPath) -> None: """Deletes the collection at the path. Args: collection_path: Path to the collection of interest. """ url_suffix = ( f"collections/{collection_path.namespace}/{collection_path.collection}" ) url = urljoin(self._base_document_index_url, url_suffix) response = requests.delete(url, headers=self.headers) self._raise_for_status(response)
[docs] def list_collections(self, namespace: str) -> Sequence[CollectionPath]: """Lists all collections within a namespace. Args: namespace: For a collection of documents. Typically corresponds to an organization. Returns: List of all `CollectionPath` instances in the given namespace. """ url_suffix = f"collections/{namespace}" url = urljoin(self._base_document_index_url, url_suffix) response = requests.get(url, headers=self.headers) self._raise_for_status(response) return [ CollectionPath(namespace=namespace, collection=collection) for collection in response.json() ]
[docs] def list_indexes(self, namespace: str) -> Sequence[IndexPath]: """Lists all indexes within a namespace. Args: namespace: For a collection of documents. Typically corresponds to an organization. Returns: List of all `IndexPath` instances in the given namespace. """ url_suffix = f"indexes/{namespace}" url = urljoin(self._base_document_index_url, url_suffix) response = requests.get(url, headers=self.headers) self._raise_for_status(response) return [ IndexPath(namespace=namespace, index=index) for index in response.json() ]
[docs] def create_index( self, index_path: IndexPath, index_configuration: IndexConfiguration ) -> None: """Creates an index in a namespace. Args: index_path: Path to the index. index_configuration: Configuration of the index to be created. """ url_suffix = f"indexes/{index_path.namespace}/{index_path.index}" url = urljoin(self._base_document_index_url, url_suffix) data = { "chunk_size": index_configuration.chunk_size, "chunk_overlap": index_configuration.chunk_overlap, "hybrid_index": index_configuration.hybrid_index, "embedding": index_configuration.embedding.model_dump(), } response = requests.put(url, data=dumps(data), headers=self.headers) self._raise_for_status(response)
[docs] def delete_index(self, index_path: IndexPath) -> None: """Delete an index in a namespace. Args: index_path: Path to the index. """ url_suffix = f"indexes/{index_path.namespace}/{index_path.index}" url = urljoin(self._base_document_index_url, url_suffix) response = requests.delete(url, headers=self.headers) self._raise_for_status(response)
[docs] def create_filter_index_in_namespace( self, namespace: str, filter_index_name: str, field_name: str, field_type: Literal["string", "integer", "float", "boolean", "datetime"], ) -> None: """Create a filter index in a specified namespace. Args: namespace: The namespace in which to create the filter index. filter_index_name: The name of the filter index to create. field_name: The name of the field to index. field_type: The type of the field to index. """ if not re.match(r"^[a-zA-Z0-9\-.]+$", filter_index_name): raise ValueError( "Filter index name can only contain alphanumeric characters (a-z, A-Z, -, . and 0-9)." ) if len(filter_index_name) > 50: raise ValueError("Filter index name cannot be longer than 50 characters.") url = f"{self._base_document_index_url}/filter_indexes/{namespace}/{filter_index_name}" data = {"field_name": field_name, "field_type": field_type} response = requests.put(url, data=dumps(data), headers=self.headers) self._raise_for_status(response)
[docs] def index_configuration(self, index_path: IndexPath) -> IndexConfiguration: """Retrieve the configuration of an index in a namespace given its name. Args: index_path: Path to the index. Returns: Configuration of the index. """ url_suffix = f"indexes/{index_path.namespace}/{index_path.index}" url = urljoin(self._base_document_index_url, url_suffix) response = requests.get(url, headers=self.headers) self._raise_for_status(response) response_json: Mapping[str, Any] = response.json() return IndexConfiguration( chunk_overlap=response_json["chunk_overlap"], chunk_size=response_json["chunk_size"], hybrid_index=response_json.get("hybrid_index"), embedding=response_json["embedding"], )
[docs] def assign_index_to_collection( self, collection_path: CollectionPath, index_name: str ) -> None: """Assign an index to a collection. Args: collection_path: Path to the collection of interest. index_name: Name of the index. """ url_suffix = f"collections/{collection_path.namespace}/{collection_path.collection}/indexes/{index_name}" url = urljoin(self._base_document_index_url, url_suffix) response = requests.put(url, headers=self.headers) self._raise_for_status(response)
[docs] def assign_filter_index_to_search_index( self, collection_path: CollectionPath, index_name: str, filter_index_name: str ) -> None: """Assign an existing filter index to an assigned search index. Args: collection_path: Path to the collection of interest. index_name: Name of the index to assign the filter index to. filter_index_name: Name of the filter index. """ url = f"{self._base_document_index_url}/collections/{collection_path.namespace}/{collection_path.collection}/indexes/{index_name}/filter_indexes/{filter_index_name}" response = requests.put(url, headers=self.headers) self._raise_for_status(response)
[docs] def unassign_filter_index_from_search_index( self, collection_path: CollectionPath, index_name: str, filter_index_name: str ) -> None: """Unassign a filter index from an assigned search index. Args: collection_path: Path to the collection of interest. index_name: Name of the index to unassign the filter index from. filter_index_name: Name of the filter index. """ url = f"{self._base_document_index_url}/collections/{collection_path.namespace}/{collection_path.collection}/indexes/{index_name}/filter_indexes/{filter_index_name}" response = requests.delete(url, headers=self.headers) self._raise_for_status(response)
[docs] def delete_index_from_collection( self, collection_path: CollectionPath, index_name: str ) -> None: """Delete an index from a collection. Args: collection_path: Path to the collection of interest. index_name: Name of the index. """ url_suffix = f"collections/{collection_path.namespace}/{collection_path.collection}/indexes/{index_name}" url = urljoin(self._base_document_index_url, url_suffix) response = requests.delete(url, headers=self.headers) self._raise_for_status(response)
[docs] def delete_filter_index_from_namespace( self, namespace: str, filter_index_name: str ) -> None: """Delete a filter index from a namespace. Args: namespace: The namespace to delete the filter index from. filter_index_name: The name of the filter index to delete. """ url = f"{self._base_document_index_url}/filter_indexes/{namespace}/{filter_index_name}" response = requests.delete(url, headers=self.headers) self._raise_for_status(response)
[docs] def progress(self, collection_path: CollectionPath) -> int: """Get the number of unembedded documents in a collection. Args: collection_path: Path to the collection of interest. Returns: The number of unembedded documents in a collection. """ url = f"{self._base_document_index_url}/collections/{collection_path.namespace}/{collection_path.collection}/progress" response = requests.get(url, headers=self.headers) self._raise_for_status(response) return int(response.text)
[docs] def list_assigned_index_names( self, collection_path: CollectionPath ) -> Sequence[str]: """List all indexes assigned to a collection. Args: collection_path: Path to the collection of interest. Returns: List of all indexes that are assigned to the collection. """ url_suffix = f"collections/{collection_path.namespace}/{collection_path.collection}/indexes" url = urljoin(self._base_document_index_url, url_suffix) response = requests.get(url, headers=self.headers) self._raise_for_status(response) return [str(index_name) for index_name in response.json()]
[docs] def list_assigned_filter_index_names( self, collection_path: CollectionPath, index_name: str ) -> Sequence[str]: """List all filter-indexes assigned to a search index in a collection. Args: collection_path: Path to the collection of interest. index_name: Search index to check. Returns: List of all filter-indexes that are assigned to the collection. """ url = f"{self._base_document_index_url}/collections/{collection_path.namespace}/{collection_path.collection}/indexes/{index_name}/filter_indexes" response = requests.get(url, headers=self.headers) self._raise_for_status(response) return [str(filter_index_name) for filter_index_name in response.json()]
[docs] def list_filter_indexes_in_namespace(self, namespace: str) -> Sequence[str]: """List all filter indexes in a namespace. Args: namespace: The namespace to list filter indexes in. Returns: List of all filter indexes in the namespace. """ url = f"{self._base_document_index_url}/filter_indexes/{namespace}" response = requests.get(url, headers=self.headers) self._raise_for_status(response) return [str(filter_index_name) for filter_index_name in response.json()]
[docs] def add_document( self, document_path: DocumentPath, contents: DocumentContents, ) -> None: """Add a document to a collection. Note: If a document with the same `document_path` exists, it will be updated with the new `contents`. Args: document_path: Consists of `collection_path` and name of document to be created. contents: Actual content of the document. Currently only supports text. """ url_suffix = f"collections/{document_path.collection_path.namespace}/{document_path.collection_path.collection}/docs/{document_path.encoded_document_name()}" url = urljoin(self._base_document_index_url, url_suffix) response = requests.put( url, data=dumps(contents._to_modalities_json()), headers=self.headers ) self._raise_for_status(response)
[docs] def delete_document(self, document_path: DocumentPath) -> None: """Delete a document from a collection. Args: document_path: Consists of `collection_path` and name of document to be deleted. """ url_suffix = f"/collections/{document_path.collection_path.namespace}/{document_path.collection_path.collection}/docs/{document_path.encoded_document_name()}" url = urljoin(self._base_document_index_url, url_suffix) response = requests.delete(url, headers=self.headers) self._raise_for_status(response)
[docs] def document(self, document_path: DocumentPath) -> DocumentContents: """Retrieve a document from a collection. Args: document_path: Consists of `collection_path` and name of document to be retrieved. Returns: Content of the retrieved document. """ url_suffix = f"collections/{document_path.collection_path.namespace}/{document_path.collection_path.collection}/docs/{document_path.encoded_document_name()}" url = urljoin(self._base_document_index_url, url_suffix) response = requests.get(url, headers=self.headers) self._raise_for_status(response) return DocumentContents._from_modalities_json(response.json())
[docs] def documents( self, collection_path: CollectionPath, filter_query_params: Optional[DocumentFilterQueryParams] = None, ) -> Sequence[DocumentInfo]: """Lists the information of documents in a collection. This includes the document name, creation timestamp and version number. Note: This does not return document contents. Args: collection_path: Path to the collection of interest. filter_query_params: Query parameters to filter the results. Returns: Information of documents in the collection. """ if filter_query_params is None: filter_query_params = DocumentFilterQueryParams( max_documents=None, starts_with=None ) url_suffix = ( f"collections/{collection_path.namespace}/{collection_path.collection}/docs" ) url = urljoin(self._base_document_index_url, url_suffix) query_params = {} if filter_query_params.max_documents: query_params["max_documents"] = str(filter_query_params.max_documents) if filter_query_params.starts_with: query_params["starts_with"] = filter_query_params.starts_with response = requests.get(url=url, params=query_params, headers=self.headers) self._raise_for_status(response) return [DocumentInfo.from_list_documents_response(r) for r in response.json()]
[docs] def search( self, collection_path: CollectionPath, index_name: str, search_query: SearchQuery, ) -> Sequence[DocumentSearchResult]: """Search through a collection with a `search_query`. Args: collection_path: Path to the collection of interest. index_name: Name of the index to search with. search_query: The query to search with. Returns: Result of the search operation. Will be empty if nothing was retrieved. """ url_suffix = f"collections/{collection_path.namespace}/{collection_path.collection}/indexes/{index_name}/search" url = urljoin(self._base_document_index_url, url_suffix) filters: list[dict[str, Any]] = [{"with": [{"modality": "text"}]}] if search_query.filters: for metadata_filter in search_query.filters: filters.append( { f"{metadata_filter.filter_type}": [ { "metadata": { "field": filter_field.field_name, f"{filter_field.criteria.value}": filter_field.field_value, } } for filter_field in metadata_filter.fields ] } ) data = { "query": [{"modality": "text", "text": search_query.query}], "max_results": search_query.max_results, "min_score": search_query.min_score, "filters": filters, } response = requests.post(url, data=dumps(data), headers=self.headers) self._raise_for_status(response) return [DocumentSearchResult._from_search_response(r) for r in response.json()]
[docs] def chunks( self, document_path: DocumentPath, index_name: str ) -> Sequence[DocumentChunk]: """Retrieve all chunks of an indexed document. If the document is still indexing, a ResourceNotFound error is raised. Args: document_path: Path to the document. index_name: Name of the index to retrieve chunks from. Returns: List of all chunks of the indexed document. """ url_suffix = f"collections/{document_path.collection_path.namespace}/{document_path.collection_path.collection}/docs/{document_path.encoded_document_name()}/indexes/{index_name}/chunks" url = urljoin(self._base_document_index_url, url_suffix) response = requests.get(url, headers=self.headers) self._raise_for_status(response) return [ DocumentChunk._from_chunk_response(r) for r in response.json() if len(r["section"]) > 0 and r["section"][0]["modality"] == "text" ]
def _raise_for_status(self, response: requests.Response) -> None: try: response.raise_for_status() except HTTPError as e: exception_factory = _status_code_to_exception.get( HTTPStatus(response.status_code), InternalError ) raise exception_factory( response.text, HTTPStatus(response.status_code) ) from e